Project Details
Projekt Print View

Untersuchung der Photoschädigung bei der hoch aufgelösten Lebendzell-Fluoreszenzmikroskopie

Subject Area Biophysics
Term from 2012 to 2015
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 216430964
 
Final Report Year 2016

Final Report Abstract

Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~ 1 kW cm-2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~ 50 J cm-2, emphasizing red fluorophores for live-cell localization microscopy. We also presented strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities. “Death by super-resolution imaging”, highlighted by Nat. Methods 12, 1111 (2015)

Publications

  • (2015) Light-induced cell damage in live-cell super-resolution microscopy. Sci Reports 5:15348
    Wäldchen, S, Lehmann, J, Klein, T, van de Linde, S, Sauer, M
    (See online at https://doi.org/10.1038/srep15348)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung