Thermodynamik der Nanosysteme fern vom thermischen Gleichgewicht
Zusammenfassung der Projektergebnisse
The aim of the project was to investigate the general thermodynamic properties of nanosystems far from thermal equilibrium. Special emphasis was put on the design, characterization and control of nanodevices, such as quantum heat engines, operating in the nonequilibrium regime. In the first part, we have developed a general framework to quantify the performance of a quantum Otto engine for a driven harmonic oscillator. In particular, we have characterized the finite-time efficiency and power of the quantum motor when coupled to generic nonequilibrium reservoirs. We have further discussed the concrete applications to coherent, entangled and squeezed reservoirs. We have additionally analyzed the first single atom nanoengine realized with an ultracold trapped ion. In the second part of the project, we have examined the nonequilibrium transport properties of cold atoms in periodic optical lattices. Specifically, we have shown that the description of diffusion in the nonergodic regime, where the Boltzmann-Gibbs statistics fails to apply, requires an extension of both the Green-Kubo relation and the Wiener-Khinchin theorem. We have moreover analyzed the experimental approach to ergodicity of a single atom in an optical lattice. In the last part, we have studied the thermodynamics of a weakly measured quantum system. We have extended the first and second laws of thermodynamics along single quantum trajectories and shown that fluctuations theorems, such as the Jarzynski nonequilibrium work equality, are verified.
Projektbezogene Publikationen (Auswahl)
- Beyond Boltzmann-Gibbs statistical mechanics in optical lattices, Nature Phys. 9, 615 (2013)
E. Lutz and F. Renzoni
(Siehe online unter https://doi.org/10.1038/NPHYS2751) - Efficiency of heat engines coupled to nonequilibrium reservoirs, EPL 106, 20001 (2014)
O. Abah and E. Lutz
(Siehe online unter https://doi.org/10.1209/0295-5075/106/20001) - Nanoscale engine beyond the Carnot limit, Phys. Rev. Lett. 112, 03602 (2014)
J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz
(Siehe online unter https://doi.org/10.1103/PhysRevLett.112.030602) - Information: From Maxwell’s demon to Landauer’s eraser, Physics Today 68(9), 30 (2015)
E. Lutz and S. Ciliberto
(Siehe online unter https://doi.org/10.1063/PT.3.2912) - Infinite density for cold atoms in shallow optical lattices, EPL 109, 23001 (2015)
P.C. Holz, A. Dechant, and E. Lutz
(Siehe online unter https://doi.org/10.1209/0295-5075/109/23001) - Wiener-Khinchin theorem for nonstationary scale-invariant processes, Phys. Rev. Lett. 115, 080603 (2015)
A. Dechant and E. Lutz
(Siehe online unter https://dx.doi.org/10.1103/PhysRevLett.115.080603) - A single-atom heat engine, Science 352, 325 (2016)
J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer
(Siehe online unter https://doi.org/10.1126/science.aad6320) - Nonergodic diffusion of single atoms in a periodic potential, Nature Phys. (2016)
F. Kindermann, A. Dechant, M. Hohmann, T. Lausch, D. Mayer, F. Schmidt, E. Lutz and A. Widera
(Siehe online unter https://doi.org/10.1038/NPHYS3911) - Optimal performance of a quantum Otto refrigerator, EPL 113, 60002 (2016)
O. Abah and E. Lutz
(Siehe online unter https://doi.org/10.1209/0295-5075/113/60002) - Thermodynamics of weakly measured quantum systems, Phys. Rev. Lett. 116, 080403 (2016)
J.J. Alonso, E. Lutz, and A. Romito
(Siehe online unter https://doi.org/10.1103/PhysRevLett.116.080403)