Detailseite
Projekt Druckansicht

The population of radio-quiet and thermally emitting isolated neutron stars. A comprehensive picture of neutron star evolution in the Galaxy

Antragstellerin Dr. Adriana Mancini Pires
Fachliche Zuordnung Astrophysik und Astronomie
Förderung Förderung von 2011 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 197551926
 
Erstellungsjahr 2015

Zusammenfassung der Projektergebnisse

Peculiar groups of X-ray emitting isolated neutron stars - which include magneiars, the 'Magnificent Seven', and central compact objects in supernova remnants - escape detection in standard pulsar surveys. Yet, they constitute a key element in understanding extreme phenomena unobserved in the normal pulsar population. The observed diversity is likely governed by the properties of the magnetic field: specifically, by its magnitude at birth, whether it decays (or grows) during the neutron star lifetime, and how these affect the rotational and thermal history (hence, detectability) of the neutron star. Overall, crucial aspects of neutron star evolution and emissivity are not probed by the radio and y-ray pulsar population alone, and are likewise not predicted by theory; in these facts reside the importance of investigating and surveying peculiar objects and long-sought missing links. Moreover, the forthcoming X-ray mission eROSITA, expected to be launched in 2017, is a timely opportunity for a better sampling of neutron stars especially that are silent in other wavelengths. We propose to investigate the Galactic population of thermally emitting isolated neutron stars to characterise properties and the evolutionary state of individual targets, as well as to understand how the peculiar objects relate to each other and to the bulk of the normal radio pulsar population. These goals are pursued by studying further the existing sample of peculiar isolated neutron stars, by identifying objects at greater distances, and by modelling the creation, evolution, and detectability of thermally emitting sources in our Galaxy with eROSITA.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung