Detailseite
Projekt Druckansicht

Analysis auf singulären komplexen Räumen

Fachliche Zuordnung Mathematik
Förderung Förderung von 2011 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 193570782
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

The main purpose of the research project was to gain a better understanding for the natural interplay of analysis and geometry on singular complex spaces by • the study of differential operators (connections between properties of the ∂ and the ∂-Neumann operator and the geometry/topology of the underlying space), • the development of analytic tools (L2-theory, integral formulas). Analytic methods have led to fundamental advances in geometry on complex manifolds, but are still not very well developed for singular complex spaces. The main achievements are • the development of an L2-theory for the ∂-operator, including • the study of L2-canonical sheaves (resolution, adjunction formula) and extension of L2-cohomology classes, • analytic realizations of Grothendieck-Serre-duality, • the investigation of complex Laplace operators (spectrum, compactness) and of the ∂-Neumann problem (subelliptic estimates), and • the development of integral formulas on singular complex spaces, as well as the investigation of auxiliary singular analytic structures appearing in this context: • (proper) modifications of coherent analytic sheaves, the Grauert–Riemenschneider canonical sheaf with values in coherent analytic sheaves, and • Chern forms for singular Hermitian metrics. An important, crucial insight was the discovery that the L2 -theory for the ∂-operator and integral formulas are particularly fruitful on spaces with canonical singularities which play a prominent role in the Minimal Model Program. The further investigation of this connection is a very interesting objective for future research.

Projektbezogene Publikationen (Auswahl)

  • Koppelman formulas on affine cones over smooth projective complete intersections, Indiana University Mathematical Journal
    R. Lärkäng, J. Ruppenthal
  • L2 -Serre duality on singular complex spaces and rational singularities, International Mathematics Research Notices
    J. Ruppenthal
  • L2-properties of the ∂ and the ∂-Neumann operator on spaces with isolated singularities, Mathematische Annalen 359 (2014), no. 3–4, 803–838
    N. Øvrelid, J. Ruppenthal
    (Siehe online unter https://doi.org/10.1007/s00208-014-1016-8)
  • L2-theory for the ∂-operator on compact complex spaces, Duke Mathematical Journal 163 (2014), no. 15, 2887–2934
    J. Ruppenthal
    (Siehe online unter https://doi.org/10.1215/0012794-2838545)
  • Subelliptic estimates for the ∂-problem on a singular space, Journal of Geometric Analysis 24 (2014), no. 4, 1844–1859
    D. Ehsani, J. Ruppenthal
    (Siehe online unter https://doi.org/10.1007/s12220-013-9397-6)
  • Adjunction for the Grauert-Riemenschneider canonical sheaf and extension of L2-cohomology classes, Indiana University Mathematical Journal 64 (2015), no. 2, 533–558
    J. Ruppenthal, H. Samuelsson Kalm, E. Wulcan
    (Siehe online unter https://doi.org/10.1512/iumj.2015.64.5493)
  • Koppelman formulas on the A1 -singularity, Journal of Mathematical Analysis and Applications 437 (2016), 214–240
    R. Lärkäng, J. Ruppenthal
    (Siehe online unter https://doi.org/10.1016/j.jmaa.2015.12.028)
  • Parabolicity of the regular locus of complex varieties, Proceedings of the AMS 144 (2016), 225–233
    J. Ruppenthal
    (Siehe online unter https://doi.org/10.1090/proc12718)
  • Explicit Serre duality on complex spaces, Advances in Mathematics 305 (2017), 1320–1355
    J. Ruppenthal, H. Samuelsson Kalm, E. Wulcan
    (Siehe online unter https://doi.org/10.1016/j.aim.2016.10.013)
  • Modifications of torsion-free coherent analytic sheaves, Annales de l’Institut Fourier 67 (2017), 237–265
    J. Ruppenthal, M. Sera
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung