Project Details
Projekt Print View

Regulierung des hepatischen Glukose- und Fettstoffwechsels durch die Retinol Saturase

Subject Area Endocrinology, Diabetology, Metabolism
Term from 2010 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 161885875
 
Final Report Year 2017

Final Report Abstract

The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An exaggerated lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia, and hyperglycemia. We identified a novel function of the oxidoreductase retinol saturase (RetSat) in metabolic liver disease. Hepatic RetSat expression correlated with steatosis and serum triglycerides in humans. Liver-specific disruption of RetSat in dietary-obese mice lowered hepatic and circulating triglycerides and normalized hyperglycemia. Mechanistically, RetSat depletion reduced the activity of carbohydrate response element-binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of de novo lipogenesis. Defects upon RetSat depletion were rescued by ectopic ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. In summary, we identified RetSat as critical regulator of liver metabolism that functions upstream of ChREBP. Pharmacologic inhibition of RetSat in liver may represent a therapeutic approach to metabolic liver disease.

Publications

  • Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem 2010. 285(52):40409-40415
    Schupp, M. and M. A. Lazar
    (See online at https://dx.doi.org/10.1074/jbc.R110.182451)
  • Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoidinduced hepatic gluconeogenesis. Diabetes 2012. 61(2):513-523
    Winkler, R., V. Benz, M. Clemenz, M. Bloch, A. Foryst-Ludwig, S. Wardat, N. Witte, M. Trappiel, P. Namsolleck, K. Mai, J. Spranger, G. Matthias, T. Roloff, O. Truee, K. Kappert, M. Schupp, P. Matthias and U. Kintscher
    (See online at https://doi.org/10.2337/db11-0313)
  • The GTPase ARFRP1 is essential for normal hepatic glycogen storage and IGF1 secretion. Mol Cell Biol 2012. 32(21):4363-74
    Hesse, D., A. Jaschke, T. Kanzleiter, N. Witte, R. Augustin, A. Hommel, G. P. Puschel, K. J. Petzke, H. G. Joost, M. Schupp and A. Schurmann
    (See online at https://doi.org/10.1128/MCB.00522-12)
  • Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues. BMC Genomics, 2013. 14(1):758
    Schupp, M., F. Chen, E. R. Briggs, S. Rao, H. J. Pelzmann, A. R. Pessentheiner, J. G. Bogner- Strauss, M. A. Lazar, D. Baldwin and A. Prokesch
    (See online at https://doi.org/10.1186/1471-2164-14-758)
  • Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor alpha activity. Mol Cell Biol 2013. 33(20):4068-4082
    Muenzner, M., N. Tuvia, C. Deutschmann, N. Witte, A. Tolkachov, A. Valai, A. Henze, L. E. Sander, J. Raila and M. Schupp
    (See online at https://doi.org/10.1128/MCB.00221-13)
  • The mammalian INDY homolog is induced by CREB in a rat model of type 2 diabetes. Diabetes 2014. 63(3):1048-1057
    Neuschafer-Rube, F., S. Lieske, M. Kuna, J. Henkel, R. J. Perry, D. M. Erion, D. Pesta, D. M. Willmes, S. Brachs, C. von Loeffelholz, A. Tolkachov, M. Schupp, A. Pathe-Neuschafer-Rube, A. F. Pfeiffer, G. I. Shulman, G. P. Puschel and A. L. Birkenfeld
    (See online at https://doi.org/10.2337/db13-0749)
  • Retinol binding protein 4 and its membrane receptors: a metabolic perspective. Horm Mol Biol Clin Investig 2015. 22(1):27-37
    Fedders, R., M. Muenzner and M. Schupp
    (See online at https://dx.doi.org/10.1515/hmbci-2015-0013)
  • The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARgamma Activity and Adipocyte Differentiation. Endocrinology 2015. 156(11):4008-4019
    Witte, N., M. Muenzner, J. Rietscher, M. Knauer, S. Heidenreich, A. M. Nuotio-Antar, F. A. Graef, R. Fedders, A. Tolkachov, I. Goehring and M. Schupp
    (See online at https://doi.org/10.1210/EN.2015-1209)
  • Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J 2017, 31(2):732-742
    Prokesch A., Graef F.A., Madl T., Kahlhofer J., Heidenreich S., Schumann A., Moyschewitz E., Pristoynik P., Blaschitz A., Knauer M., Muenzner M., Bogner-Strauss J.G., Dohr G., Schulz T.J., Schupp M.
    (See online at https://doi.org/10.1096/fj.201600845R)
  • Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Nat Struct Mol Biol 2017, 24(1):15-22
    Klemz R., Reischl S., Wallach T., Witte N., Jürchott K., Klemz S., Lang V., Lorenzen S., Knauer M., Heidenreich S., Xu M., Ripperger J.A., Schupp M., Stanewsky R., Kramer A.
    (See online at https://doi.org/10.1038/nsmb.3331)
  • Retinol Saturase Coordinates Liver Metabolism by Regulating ChREBP Activity. Nat Commun 2017, 8(1):384
    Heidenreich S., N. Witte, P. Weber, I. Goehring, A. Tolkachov, C. von Loeffelholz, S. Döcke, M. Bauer, M. Stockmann, A.F. Pfeiffer, A. L. Birkenfeld, M. Pietzke, S. Kempa, M. Muenzner, and Schupp M.
    (See online at https://doi.org/10.1038/s41467-017-00430-w)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung