Detailseite
Projekt Druckansicht

Novel physics of polar molecules in optical lattices

Fachliche Zuordnung Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2010 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 160524815
 
Erstellungsjahr 2014

Zusammenfassung der Projektergebnisse

The long-range anisotropic character of the dipole-dipole interaction leads to rich new physics in dipolar gases, already partially unveiled by recent experiments on atomic magnetic dipoles. Recent experiments on heteronuclear molecules allow to foreseeing in the next future a quantum degenerate gas of polar molecules, in which electric dipole-dipole interactions may completely dominate the system. This may be particularly striking for polar molecules in optical lattices, which may present siginificant dipole-induced inter-site interactions, in stark contrast to non-dipolar gases, where inter-site interactions are vanishingly small. This project has focused on the novel effects introduced by the dipole-dipole interaction in ultra-cold dipolar gases in optical lattices, with a particular emphasis on three different scenarios, where new physics arises from inter-site interactions. On one hand, and in close collaboration with experiments, we have studied the stability, collapse dynamics, and excitations of dipolar condensates in 1D lattices, showing that inter-site interactions significantly affect the condensate stability even in absence of intersite hopping. On other hand, we have studied the possibility of forming interlayer composites of polar molecules, i.e. non-local composites formed by molecules which are physically at two different and non-overlapping layers. On yet another hand, we have studied how inter-site interactions modify the physics of polar bosons in disordered lattices, and reported, in close collaboration with experimentalists, the first observation of non-equlibrium quantum dynamics in dipolar lattice gases.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung